Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.534
Filtrar
1.
Food Funct ; 15(8): 4564-4574, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38584588

RESUMO

This study aimed to investigate the potential of beef peptides (BPs) in mitigating muscle atrophy induced by dexamethasone (DEX) with underlying three mechanisms in vitro (protein degradation, protein synthesis, and the oxidative stress pathway). Finally, the anti-atrophic effect of BPs was enhanced through purification and isolation. BPs were generated using beef loin hydrolyzed with alcalase/ProteAX/trypsin, each at a concentration of 0.67%, followed by ultrafiltration through a 3 kDa cut-off. BPs (10-100 µg mL-1) dose-dependently counteracted the DEX-induced reductions in myotube diameters, differentiation, fusion, and maturation indices (p < 0.05). Additionally, BPs significantly reduced FoxO1 protein dephosphorylation, thereby suppressing muscle-specific E3 ubiquitin ligases such as muscle RING-finger containing protein-1 and muscle atrophy F-box protein in C2C12 myotubes at concentrations exceeding 25 µg mL-1 (p < 0.05). BPs also enhanced the phosphorylation of protein synthesis markers, including mTOR, 4E-BP1, and p70S6K1, in a dose-dependent manner (p < 0.05) and increased the mRNA expression of antioxidant enzymes. Fractionated peptides derived from BPs, through size exclusion and polarity-based fractionation, also demonstrated enhanced anti-atrophic effects compared to BPs. These peptides downregulated the mRNA expression of primary muscle atrophy markers while upregulated that of antioxidant enzymes. Specifically, peptides GAGAAGAPAGGA (MW 924.5) and AFRSSTKK (MW 826.4) were identified from fractionated peptides of BPs. These findings suggest that BPs, specifically the peptide fractions GAGAAGAPAGGA and AFRSSTKK, could be a potential strategy to mitigate glucocorticoid-induced skeletal muscle atrophy by reducing the E3 ubiquitin ligase activity.


Assuntos
Fibras Musculares Esqueléticas , Atrofia Muscular , Estresse Oxidativo , Peptídeos , Animais , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/farmacologia , Bovinos , Proteólise/efeitos dos fármacos , Linhagem Celular , Biossíntese de Proteínas/efeitos dos fármacos , Carne Vermelha , Proteínas Musculares/metabolismo , Dexametasona/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/metabolismo
2.
Mycotoxin Res ; 40(2): 279-293, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498144

RESUMO

Humans and their immune system are confronted with mold-contaminated food and/or mold-contaminated air in daily life and indoor activities. This results in metabolic stress and unspecific disease symptoms. Other studies provided evidence that exposure to mold is associated with the etiology of allergies. Deoxynivalenol (DON) is of great concern due to its frequent occurrence in toxically relevant concentrations. The exposure to this toxin is a permanent health risk for both humans and farm animals because DON cannot be significantly removed during standard milling and processing procedures. However, the direct effect on immunity or hematology is poorly defined because most investigations could not separate the effect of DON-contaminated feed intake. Due to the widespread distribution of DON after rapid absorption, it is not surprising that DON is known to affect the immune system. The immune system of the organism has one important function, to defend against the invasion of unknown substances/organisms. This study shows for the first time a synergistic effect of both-low physiological DON-doses in combination with low LPS-doses with the focus on the IL-8 expression on protein and RNA level. Both doses were found in vivo. IL-8 together with other anorectic cytokines like IL-1ß can affect the food intake and anorexia. We could also show that a calcium-response is not involved in the increased IL-8 production after acute DON stimulation with high or low concentrations.


Assuntos
Interleucina-8 , Monócitos , Transdução de Sinais , Tricotecenos , Tricotecenos/toxicidade , Interleucina-8/metabolismo , Transdução de Sinais/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Animais , Biossíntese de Proteínas/efeitos dos fármacos , Humanos , Células Cultivadas
3.
Proc Natl Acad Sci U S A ; 121(13): e2319856121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513098

RESUMO

The use of lipid nanoparticles (LNP) to encapsulate and deliver mRNA has become an important therapeutic advance. In addition to vaccines, LNP-mRNA can be used in many other applications. For example, targeting the LNP with anti-CD5 antibodies (CD5/tLNP) can allow for efficient delivery of mRNA payloads to T cells to express protein. As the percentage of protein expressing T cells induced by an intravenous injection of CD5/tLNP is relatively low (4-20%), our goal was to find ways to increase mRNA-induced translation efficiency. We showed that T cell activation using an anti-CD3 antibody improved protein expression after CD5/tLNP transfection in vitro but not in vivo. T cell health and activation can be increased with cytokines, therefore, using mCherry mRNA as a reporter, we found that culturing either mouse or human T cells with the cytokine IL7 significantly improved protein expression of delivered mRNA in both CD4+ and CD8+ T cells in vitro. By pre-treating mice with systemic IL7 followed by tLNP administration, we observed significantly increased mCherry protein expression by T cells in vivo. Transcriptomic analysis of mouse T cells treated with IL7 in vitro revealed enhanced genomic pathways associated with protein translation. Improved translational ability was demonstrated by showing increased levels of protein expression after electroporation with mCherry mRNA in T cells cultured in the presence of IL7, but not with IL2 or IL15. These data show that IL7 selectively increases protein translation in T cells, and this property can be used to improve expression of tLNP-delivered mRNA in vivo.


Assuntos
Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Interleucina-7 , Lipossomos , Nanopartículas , Biossíntese de Proteínas , RNA Mensageiro , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Interleucina-7/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Camundongos Endogâmicos C57BL , Células Cultivadas , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia
4.
J Biol Chem ; 299(9): 105151, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567479

RESUMO

Hepatitis B virus (HBV) is a hepatotropic DNA virus that has a very compact genome. Due to this genomic density, several distinct mechanisms are used to facilitate the viral life cycle. Recently, accumulating evidence show that G-quadruplex (G4) in different viruses play essential regulatory roles in key steps of the viral life cycle. Although G4 structures in the HBV genome have been reported, their function in HBV replication remains elusive. In this study, we treated an HBV replication-competent cell line and HBV-infected cells with the G4 structure stabilizer pyridostatin (PDS) and evaluated different HBV replication markers to better understand the role played by the G4. In both models, we found PDS had no effect on viral precore RNA (pcRNA) or pre-genomic RNA (pgRNA), but treatment did increase HBeAg/HBc ELISA reads and intracellular levels of viral core/capsid protein (HBc) in a dose-dependent manner, suggesting post-transcriptional regulation. To further dissect the mechanism of G4 involvement, we used in vitro-synthesized HBV pcRNA and pgRNA. Interestingly, we found PDS treatment only enhanced HBc expression from pgRNA but not HBeAg expression from pcRNA. Our bioinformatic analysis and CD spectroscopy revealed that pgRNA harbors a conserved G4 structure. Finally, we introduced point mutations in pgRNA to disrupt its G4 structure and observed the resulting mutant failed to respond to PDS treatment and decreased HBc level in in vitro translation assay. Taken together, our data demonstrate that HBV pgRNA contains a G4 structure that plays a vital role in the regulation of viral mRNA translation.


Assuntos
Quadruplex G , Vírus da Hepatite B , Hepatite B , Humanos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Hepatite B/virologia , Antígenos E da Hepatite B/metabolismo , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Proteínas do Core Viral/química , Proteínas do Core Viral/metabolismo , Replicação Viral/genética , Linhagem Celular , Quadruplex G/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Mutação , Aminoquinolinas/farmacologia
5.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37446007

RESUMO

Some chemoattractants and leukocytes such as M1 and M2 macrophages are known to be involved in the development of glomerulosclerosis during diabetic nephropathy (DN). In the course of diabetes, an altered and defective cellular metabolism leads to the increase in adenosine levels, and thus to changes in the polarity (M1/M2) of macrophages. MRS1754, a selective antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerulosclerosis and decreased macrophage-myofibroblast transition in DN rats. Therefore, we aimed to investigate the effect of MRS1754 on the glomerular expression/secretion of chemoattractants, the intraglomerular infiltration of leukocytes, and macrophage polarity in DN rats. Kidneys/glomeruli of non-diabetic, DN, and MRS1754-treated DN rats were processed for transcriptomic analysis, immunohistopathology, ELISA, and in vitro macrophage migration assays. The transcriptomic analysis identified an upregulation of transcripts and pathways related to the immune system in the glomeruli of DN rats, which was attenuated using MRS1754. The antagonism of the A2BAR decreased glomerular expression/secretion of chemoattractants (CCL2, CCL3, CCL6, and CCL21), the infiltration of macrophages, and their polarization to M2 in DN rats. The in vitro macrophages migration induced by conditioned-medium of DN glomeruli was significantly decreased using neutralizing antibodies against CCL2, CCL3, and CCL21. We concluded that the pharmacological blockade of the A2BAR decreases the transcriptional expression of genes/pathways related to the immune response, protein expression/secretion of chemoattractants, as well as the infiltration of macrophages and their polarization toward the M2 phenotype in the glomeruli of DN rats, suggesting a new mechanism implicated in the antifibrotic effect of MRS1754.


Assuntos
Acetamidas , Antagonistas do Receptor A2 de Adenosina , Polaridade Celular , Fatores Quimiotáticos , Nefropatias Diabéticas , Glomérulos Renais , Macrófagos , Purinas , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/imunologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Fatores Quimiotáticos/antagonistas & inibidores , Fatores Quimiotáticos/genética , Fatores Quimiotáticos/metabolismo , Polaridade Celular/efeitos dos fármacos , Polaridade Celular/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Receptor A2B de Adenosina , Acetamidas/farmacologia , Purinas/farmacologia , Animais , Ratos , Movimento Celular/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Transcrição Gênica/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Imunidade/genética
6.
J Biol Chem ; 299(9): 105075, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481209

RESUMO

Iron-sulfur clusters (ISC) are essential cofactors that participate in electron transfer, environmental sensing, and catalysis. Amongst the most ancient ISC-containing proteins are the ferredoxin (FDX) family of electron carriers. Humans have two FDXs- FDX1 and FDX2, both of which are localized to mitochondria, and the latter of which is itself important for ISC synthesis. We have previously shown that hypoxia can eliminate the requirement for some components of the ISC biosynthetic pathway, but FDXs were not included in that study. Here, we report that FDX1, but not FDX2, is dispensable under 1% O2 in cultured human cells. We find that FDX1 is essential for production of the lipoic acid cofactor, which is synthesized by the ISC-containing enzyme lipoyl synthase. While hypoxia can rescue the growth phenotype of either FDX1 or lipoyl synthase KO cells, lipoylation in these same cells is not rescued, arguing against an alternative biosynthetic route or salvage pathway for lipoate in hypoxia. Our work reveals the divergent roles of FDX1 and FDX2 in mitochondria, identifies a role for FDX1 in lipoate synthesis, and suggests that loss of lipoic acid can be tolerated under low oxygen tensions in cell culture.


Assuntos
Ferredoxinas , Lipoilação , Humanos , Ferredoxinas/genética , Ferredoxinas/metabolismo , Ácido Tióctico/metabolismo , Hipóxia Celular/efeitos dos fármacos , Técnicas de Inativação de Genes , Oxigênio/farmacologia , Proteoma/efeitos dos fármacos , Proteoma/genética , Sulfurtransferases/genética , Sulfurtransferases/metabolismo , Sítios de Ligação , Estabilidade Proteica , Biossíntese de Proteínas/efeitos dos fármacos
7.
Science ; 381(6653): 70-75, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410833

RESUMO

Ribosomes catalyze protein synthesis by cycling through various functional states. These states have been extensively characterized in vitro, but their distribution in actively translating human cells remains elusive. We used a cryo-electron tomography-based approach and resolved ribosome structures inside human cells with high resolution. These structures revealed the distribution of functional states of the elongation cycle, a Z transfer RNA binding site, and the dynamics of ribosome expansion segments. Ribosome structures from cells treated with Homoharringtonine, a drug used against chronic myeloid leukemia, revealed how translation dynamics were altered in situ and resolve the small molecules within the active site of the ribosome. Thus, structural dynamics and drug effects can be assessed at high resolution within human cells.


Assuntos
Antineoplásicos , Neoplasias , Biossíntese de Proteínas , Humanos , Antineoplásicos/farmacologia , Sítios de Ligação , Microscopia Crioeletrônica , Neoplasias/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Ribossomos/química , Ribossomos/metabolismo , RNA de Transferência/metabolismo
8.
Int Immunopharmacol ; 117: 109940, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37012863

RESUMO

Overexpression of pro-inflammatory cytokines and iNOS have been found to be concomitant with several chronic inflammatory diseases and hence targeting their inhibition would be a useful therapy for inflammation. In view of this, study on discovery of natural pro-inflammatory cytokines inhibitory lead molecules from Penicillium polonicum, an endophytic fungus isolated from the fresh fruits of Piper nigrum was performed. When the culture broth extract of P. polonicum (EEPP) was subjected to LPS-induced cytokines expression (ELISA in RAW 264.7 cells), it exhibited inhibition of TNF-α, IL-6 and IL-1ß and this encouraged us to do chemical investigation on EEPP to explore the bioactive components. Four compounds isolated and characterised as 3,5-di-tert-butyl-4-hydroxy-phenyl propionic acid (1), 2,4-di-tert-butyl phenol (2), indole 3-carboxylic acid (3) and tyrosol (4) were tested for their effect on the production of TNF-α, IL-1ß and IL-6 in RAW 264.7 cells (ELISA). All the compounds exhibited a highly significant (P < 0.0001) inhibition effect, particularly against IL-1ß (IC50: 4-0.91 µM, 1-2.81 µM, 3-4.38 µM, and 2-5.54 µM). Tyrosol (4) was most active with IC50 values of 0.91, 2.67 and 4.60 µM against IL-1ß, IL-6 and TNF-α, respectively. On observing the potential activity of the compounds, two compositions C1 and C2 were prepared by mixing equimolar concentrations of compounds 1, 2, 3 & 4 (C1) and compounds 1, 2, 3, 4 & piperine (C2) in equal ratio. A synergistic effect was observed with C1 exhibiting potential suppression of IL-6 secretion (IC50 1.91 µM) and C2 against IL-1ß (IC50 5.98 µM). Also, the individual compounds and C1 were effective in controlling iNOS expressions in RAW 264.7 cells (RTPCR). Further, the in vivo performance of the compounds and compositions were studied under two in vivo inflammatory models (LPS-induced endotoxaemia and carrageenan-induced paw oedema). Compounds 1, 2, 3, 4, C1 and C2 at 50 mg/kg oral dose showed a significant control over the LPS-stimulated TNF-α, IL-1ß and IL-6 levels in plasma. C1, C2 and 1 exhibited > 50% pan-cytokine inhibition effect. Under the carrageenan-induced anti-inflammatory model, a significant reduction in the paw oedema measured in terms of the difference in the paw thickness was observed. Further, attenuation of pro-inflammatory cytokines levels following ELISA and RT-PCR experiments in the paw tissue homogenate was in agreement with paw thickness results. All compounds and C1 decreased the iNOS gene expression levels, and also the MPO activity and NO production in the paw tissue homogenate with tyrosol (4) as the most active molecule. Further, the mechanism of action was explored by testing the effect of the compounds on the expression of inflammatory markers using western blot analysis (in vitro). They were found to regulate the expression of pro-form and matured-form of IL-1ß by inhibiting NFκB. Also, the compounds reduced the translocation of the NF-κB subunit p65 to the nucleus. Thus, compounds 3,5-di-tert-butyl-4-hydroxy-phenyl propionic acid (1), 2,4-di-tert-butyl phenol (2), indole 3-carboxylic acid (3) and tyrosol (4) are reported as new natural multiple pro-inflammatory cytokines inhibitory leads. The interesting results of C1 might lay a footing for the development of a new anti-inflammatory composition.


Assuntos
Citocinas , Óxido Nítrico Sintase Tipo II , Penicillium , Animais , Camundongos , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Citocinas/biossíntese , Sinergismo Farmacológico , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Penicillium/química , Biossíntese de Proteínas/efeitos dos fármacos , Células RAW 264.7
9.
J Nutr Biochem ; 115: 109277, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36739096

RESUMO

Selenomethionine (Se-Met) has many beneficial effects on higher animals and human, and can regulate cellular physiology through distinct signaling pathways. However, the role and molecular mechanism of Se-Met in skeletal muscle growth remains unclear. In this study, we observed the effects of Se-Met on C2C12 myoblasts and skeletal muscle growth of mice, and explored the corresponding molecular mechanism. Se-Met affected proliferation and protein synthesis of C2C12 myoblasts in a hormesis type of relationship, and had an optimal stimulatory effect at 50 µM concentration. Se-Met also affected mTOR, ANXA2, and PKCα phosphorylation in the same manner. ANXA2 knockdown blocked the stimulation of Se-Met on cell proliferation and protein synthesis and inhibition of Se-Met on autophagy of C2C12 myoblasts. Western blotting analysis showed that PI3K inhibition blocked the stimulation of Se-Met on mTOR phosphorylation. ANXA2 knockdown further blocked the stimulation of Se-Met on PI3K and mTOR phosphorylation. Point mutation experiment showed that ANXA2 mediated the stimulation of Se-Met on the PI3K-mTOR signaling through phosphorylation at Ser26. PKCα interacted with ANXA2, and PKCα knockdown blocked the stimulation of Se-Met on ANXA2 phosphorylation at Ser26. Se-Met addition (7.5mg/kg diet, 4 weeks) increased mouse carcass weight, promoted gastrocnemius skeletal muscle growth and ANXA2 and mTOR phosphorylation in this tissue. Collectively, our findings reveal that Se-Met can promote proliferation and protein synthesis of myoblasts and skeletal muscle growth through ANXA2 phosphorylation.


Assuntos
Anexina A2 , Músculo Esquelético , Mioblastos , Selenometionina , Animais , Humanos , Camundongos , Anexina A2/genética , Anexina A2/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/farmacologia , Selenometionina/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética
10.
Hepatology ; 77(2): 594-605, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35770681

RESUMO

BACKGROUND AND AIMS: Liver injury may persist in patients with HBV receiving antiviral therapy who have ongoing transcription and translation. We sought to assess ongoing HBV transcription by serum HBV RNA, translation by serum hepatitis B core related antigen (HBcrAg), and their associations with hepatic HBsAg and HBcAg staining in patients coinfected with HBV and HIV. METHODS: This is a cross-sectional study of 110 adults coinfected with HBV and HIV who underwent clinical assessment and liver biopsy. Immunohistochemistry (IHC) was performed for HBsAg and HBcAg. Viral biomarkers included quantitative HBsAg, HBV RNA, and HBcrAg. RESULTS: Participants' median age was 49 years (male, 93%; Black, 51%; HBeAg+, 65%), with suppressed HBV DNA (79%) and undetectable HIV RNA (77%) on dually active antiretroviral therapy. Overall, HBV RNA and HBcrAg were quantifiable in 81% and 83%, respectively (96% and 100% in HBeAg+, respectively). HBcAg staining was detected in 60% and HBsAg in 79%. Higher HBV RNA was associated with higher HBcAg and HBsAg IHC grades (both p < 0.0001). The HBsAg membranous staining pattern was significantly associated with higher HBV-RNA and HBcrAg levels. CONCLUSION: HBcAg and HBsAg IHC staining persisted despite viral suppression, and IHC grades and staining patterns correlated with markers of transcription (HBV RNA) and translation (HBcrAg). These data indicate that apparent HBV suppression is associated with residual transcription and translation that could contribute to liver pathology. Additional antiviral strategies directed to HBV protein expression may be useful to ameliorate liver injury.


Assuntos
Antirretrovirais , Coinfecção , Infecções por HIV , Vírus da Hepatite B , Hepatite B Crônica , Transcrição Viral , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores , Coinfecção/tratamento farmacológico , Coinfecção/imunologia , Coinfecção/fisiopatologia , Coinfecção/virologia , Estudos Transversais , DNA Viral , Antígenos do Núcleo do Vírus da Hepatite B , Antígenos E da Hepatite B , Antígenos de Superfície da Hepatite B , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/imunologia , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , RNA , Transcrição Viral/efeitos dos fármacos , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Biossíntese de Proteínas/efeitos dos fármacos
11.
Nucleic Acids Res ; 51(1): 449-462, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36546783

RESUMO

Thermorubin (THR) is an aromatic anthracenopyranone antibiotic active against both Gram-positive and Gram-negative bacteria. It is known to bind to the 70S ribosome at the intersubunit bridge B2a and was thought to inhibit factor-dependent initiation of translation and obstruct the accommodation of tRNAs into the A site. Here, we show that thermorubin causes ribosomes to stall in vivo and in vitro at internal and termination codons, thereby allowing the ribosome to initiate protein synthesis and translate at least a few codons before stalling. Our biochemical data show that THR affects multiple steps of translation elongation with a significant impact on the binding stability of the tRNA in the A site, explaining premature cessation of translation. Our high-resolution crystal and cryo-EM structures of the 70S-THR complex show that THR can co-exist with P- and A-site tRNAs, explaining how ribosomes can elongate in the presence of the drug. Remarkable is the ability of THR to arrest ribosomes at the stop codons. Our data suggest that by causing structural re-arrangements in the decoding center, THR interferes with the accommodation of tRNAs or release factors into the ribosomal A site.


Assuntos
Antraquinonas , Antibacterianos , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Biossíntese de Proteínas , Antibacterianos/farmacologia , Códon de Terminação/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Ribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Antraquinonas/farmacologia
12.
J Nat Prod ; 85(11): 2626-2640, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346625

RESUMO

Escherichia coli isolates commonly inhabit the human microbiota, yet the majority of E. coli's small-molecule repertoire remains uncharacterized. We previously employed erythromycin-induced translational stress to facilitate the characterization of autoinducer-3 (AI-3) and structurally related pyrazinones derived from "abortive" tRNA synthetase reactions in pathogenic, commensal, and probiotic E. coli isolates. In this study, we explored the "missing" tryptophan-derived pyrazinone reaction and characterized two other families of metabolites that were similarly upregulated under erythromycin stress. Strikingly, the abortive tryptophanyl-tRNA synthetase reaction leads to a tetracyclic indole alkaloid metabolite (1) rather than a pyrazinone. Furthermore, erythromycin induced two naphthoquinone-functionalized metabolites (MK-hCys, 2; and MK-Cys, 3) and four lumazines (7-10). Using genetic and metabolite analyses coupled with biomimetic synthesis, we provide support that the naphthoquinones are derived from 4-dihydroxy-2-naphthoic acid (DHNA), an intermediate in the menaquinone biosynthetic pathway, and the amino acids homocysteine and cysteine. In contrast, the lumazines are dependent on a flavin intermediate and α-ketoacids from the aminotransferases AspC and TyrB. We show that one of the lumazine members (9), an indole-functionalized analogue, possesses antioxidant properties, modulates the anti-inflammatory fate of isolated TH17 cells, and serves as an aryl-hydrocarbon receptor (AhR) agonist. These three systems described here serve to illustrate that new metabolic branches could be more commonly derived from well-established primary metabolic pathways.


Assuntos
Escherichia coli , Naftoquinonas , Estresse Fisiológico , Humanos , Eritromicina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Naftoquinonas/metabolismo , Triptofano/metabolismo , Triptofano-tRNA Ligase/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos
13.
Nature ; 610(7930): 205-211, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36171285

RESUMO

Translation is the fundamental process of protein synthesis and is catalysed by the ribosome in all living cells1. Here we use advances in cryo-electron tomography and sub-tomogram analysis2,3 to visualize the structural dynamics of translation inside the bacterium Mycoplasma pneumoniae. To interpret the functional states in detail, we first obtain a high-resolution in-cell average map of all translating ribosomes and build an atomic model for the M. pneumoniae ribosome that reveals distinct extensions of ribosomal proteins. Classification then resolves 13 ribosome states that differ in their conformation and composition. These recapitulate major states that were previously resolved in vitro, and reflect intermediates during active translation. On the basis of these states, we animate translation elongation inside native cells and show how antibiotics reshape the cellular translation landscapes. During translation elongation, ribosomes often assemble in defined three-dimensional arrangements to form polysomes4. By mapping the intracellular organization of translating ribosomes, we show that their association into polysomes involves a local coordination mechanism that is mediated by the ribosomal protein L9. We propose that an extended conformation of L9 within polysomes mitigates collisions to facilitate translation fidelity. Our work thus demonstrates the feasibility of visualizing molecular processes at atomic detail inside cells.


Assuntos
Microscopia Crioeletrônica , Mycoplasma pneumoniae , Biossíntese de Proteínas , Proteínas Ribossômicas , Ribossomos , Antibacterianos/farmacologia , Mycoplasma pneumoniae/citologia , Mycoplasma pneumoniae/efeitos dos fármacos , Mycoplasma pneumoniae/metabolismo , Mycoplasma pneumoniae/ultraestrutura , Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , Polirribossomos/ultraestrutura , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/efeitos dos fármacos , Ribossomos/metabolismo , Ribossomos/ultraestrutura
14.
Proc Natl Acad Sci U S A ; 119(38): e2123529119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36095201

RESUMO

Cells respond to environmental stress by regulating gene expression at the level of both transcription and translation. The ∼50 modified ribonucleotides of the human epitranscriptome contribute to the latter, with mounting evidence that dynamic regulation of transfer RNA (tRNA) wobble modifications leads to selective translation of stress response proteins from codon-biased genes. Here we show that the response of human hepatocellular carcinoma cells to arsenite exposure is regulated by the availability of queuine, a micronutrient and essential precursor to the wobble modification queuosine (Q) on tRNAs reading GUN codons. Among oxidizing and alkylating agents at equitoxic concentrations, arsenite exposure caused an oxidant-specific increase in Q that correlated with up-regulation of proteins from codon-biased genes involved in energy metabolism. Limiting queuine increased arsenite-induced cell death, altered translation, increased reactive oxygen species levels, and caused mitochondrial dysfunction. In addition to demonstrating an epitranscriptomic facet of arsenite toxicity and response, our results highlight the links between environmental exposures, stress tolerance, RNA modifications, and micronutrients.


Assuntos
Arsenitos , Epigênese Genética , Guanina , RNA de Transferência , Transcriptoma , Arsenitos/toxicidade , Linhagem Celular Tumoral , Códon/genética , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Oxirredução , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , RNA de Transferência/genética
15.
Nature ; 607(7919): 593-603, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35768510

RESUMO

Aggressive and metastatic cancers show enhanced metabolic plasticity1, but the precise underlying mechanisms of this remain unclear. Here we show how two NOP2/Sun RNA methyltransferase 3 (NSUN3)-dependent RNA modifications-5-methylcytosine (m5C) and its derivative 5-formylcytosine (f5C) (refs.2-4)-drive the translation of mitochondrial mRNA to power metastasis. Translation of mitochondrially encoded subunits of the oxidative phosphorylation complex depends on the formation of m5C at position 34 in mitochondrial tRNAMet. m5C-deficient human oral cancer cells exhibit increased levels of glycolysis and changes in their mitochondrial function that do not affect cell viability or primary tumour growth in vivo; however, metabolic plasticity is severely impaired as mitochondrial m5C-deficient tumours do not metastasize efficiently. We discovered that CD36-dependent non-dividing, metastasis-initiating tumour cells require mitochondrial m5C to activate invasion and dissemination. Moreover, a mitochondria-driven gene signature in patients with head and neck cancer is predictive for metastasis and disease progression. Finally, we confirm that this metabolic switch that allows the metastasis of tumour cells can be pharmacologically targeted through the inhibition of mitochondrial mRNA translation in vivo. Together, our results reveal that site-specific mitochondrial RNA modifications could be therapeutic targets to combat metastasis.


Assuntos
5-Metilcitosina , Citosina/análogos & derivados , Glicólise , Mitocôndrias , Metástase Neoplásica , Fosforilação Oxidativa , RNA Mitocondrial , 5-Metilcitosina/biossíntese , 5-Metilcitosina/metabolismo , Antígenos CD36 , Sobrevivência Celular , Citosina/metabolismo , Progressão da Doença , Glicólise/efeitos dos fármacos , Humanos , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mitocondrial/genética , RNA Mitocondrial/metabolismo , RNA de Transferência de Metionina/genética , RNA de Transferência de Metionina/metabolismo
17.
Science ; 376(6597): 1074-1079, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35653481

RESUMO

Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) are attractive drug targets, and we present class I and II aaRSs as previously unrecognized targets for adenosine 5'-monophosphate-mimicking nucleoside sulfamates. The target enzyme catalyzes the formation of an inhibitory amino acid-sulfamate conjugate through a reaction-hijacking mechanism. We identified adenosine 5'-sulfamate as a broad-specificity compound that hijacks a range of aaRSs and ML901 as a specific reagent a specific reagent that hijacks a single aaRS in the malaria parasite Plasmodium falciparum, namely tyrosine RS (PfYRS). ML901 exerts whole-life-cycle-killing activity with low nanomolar potency and single-dose efficacy in a mouse model of malaria. X-ray crystallographic studies of plasmodium and human YRSs reveal differential flexibility of a loop over the catalytic site that underpins differential susceptibility to reaction hijacking by ML901.


Assuntos
Antimaláricos , Malária Falciparum , Terapia de Alvo Molecular , Plasmodium falciparum , Biossíntese de Proteínas , Proteínas de Protozoários , Tirosina-tRNA Ligase , Adenosina/análogos & derivados , Animais , Antimaláricos/química , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cristalografia por Raios X , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Camundongos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Biossíntese de Proteínas/efeitos dos fármacos , Conformação Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Ácidos Sulfônicos/química , Tirosina-tRNA Ligase/química , Tirosina-tRNA Ligase/metabolismo
18.
Biochem Biophys Res Commun ; 596: 56-62, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35114585

RESUMO

Despite the success of proteasome inhibitors (PIs) in treating hematopoietic malignancies, including multiple myeloma (MM), their clinical efficacy is limited in solid tumors. In this study, we investigated the involvement of the integrated stress response (ISR), a central cellular adaptive program that responds to proteostatic defects by tuning protein synthesis rates, in determining the fates of cells treated with PI, bortezomib (Bz). We found that Bz induces ISR, and this can be reversed by ISRIB, a small molecule that restores eIF2B-mediated translation during ISR, in both Bz-sensitive MM cells and Bz-insensitive breast cancer cells. Interestingly, while ISRIB protected MM cells from Bz-induced apoptosis, it enhanced Bz sensitivity in breast cancer cells by inducing paraptosis, the cell death mode that is accompanied by dilation of the endoplasmic reticulum (ER) and mitochondria. Combined treatment with ISRIB and Bz may shift the fate of Bz-insensitive cancer cells toward paraptosis by inducing translational rescue, leading to irresolvable proteotoxic stress.


Assuntos
Acetamidas/farmacologia , Bortezomib/farmacologia , Neoplasias da Mama/metabolismo , Cicloexilaminas/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Inibidores de Proteassoma/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos
19.
PLoS One ; 17(2): e0263430, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35139106

RESUMO

BMP7 is a morphogen capable of counteracting the OA chondrocyte hypertrophic phenotype via NKX3-2. NKX3-2 represses expression of RUNX2, an important transcription factor for chondrocyte hypertrophy. Since RUNX2 has previously been described as an inhibitor for 47S pre-rRNA transcription, we hypothesized that BMP7 positively influences 47S pre-rRNA transcription through NKX3-2, resulting in increased protein translational capacity. Therefor SW1353 cells and human primary chondrocytes were exposed to BMP7 and rRNA (18S, 5.8S, 28S) expression was determined by RT-qPCR. NKX3-2 knockdown was achieved via transfection of a NKX3-2-specific siRNA duplex. Translational capacity was assessed by the SUNsET assay, and 47S pre-rRNA transcription was determined by transfection of a 47S gene promoter-reporter plasmid. BMP7 treatment increased protein translational capacity. This was associated by increased 18S and 5.8S rRNA and NKX3-2 mRNA expression, as well as increased 47S gene promotor activity. Knockdown of NKX3-2 led to increased expression of RUNX2, accompanied by decreased 47S gene promotor activity and rRNA expression, an effect BMP7 was unable to restore. Our data demonstrate that BMP7 positively influences protein translation capacity of SW1353 cells and chondrocytes. This is likely caused by an NKX3-2-dependent activation of 47S gene promotor activity. This finding connects morphogen-mediated changes in cellular differentiation to an aspect of ribosome biogenesis via key transcription factors central to determining the chondrocyte phenotype.


Assuntos
Proteína Morfogenética Óssea 7/fisiologia , Condrócitos/metabolismo , Proteínas de Homeodomínio/fisiologia , Biossíntese de Proteínas/genética , RNA Ribossômico/metabolismo , Fatores de Transcrição/fisiologia , Proteína Morfogenética Óssea 7/farmacologia , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/fisiologia , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Regiões Promotoras Genéticas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Ribossômico/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
20.
Open Biol ; 12(2): 210244, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35167765

RESUMO

It has been demonstrated that impairing protein synthesis using drugs targeted against tRNA amino acid synthetases presents a promising strategy for the treatment of a wide variety of parasitic diseases, including malaria and toxoplasmosis. This is the first study evaluating tRNA synthetases as potential drug targets in ticks. RNAi knock-down of all tested tRNA synthetases had a strong deleterious phenotype on Ixodes ricinus feeding. Our data indicate that tRNA synthetases represent attractive, anti-tick targets warranting the design of selective inhibitors. Further, we tested whether these severely impaired ticks were capable of transmitting Borrelia afzelii spirochaetes. Interestingly, biologically handicapped I. ricinus nymphs transmitted B. afzelii in a manner quantitatively sufficient to develop a systemic infection in mice. These data suggest that initial blood-feeding, despite the incapability of ticks to fully feed and salivate, is sufficient for activating B. afzelii from a dormant to an infectious mode, enabling transmission and dissemination in host tissues.


Assuntos
Acaricidas/farmacologia , Doença de Lyme/transmissão , Carrapatos/efeitos dos fármacos , Carrapatos/microbiologia , Aminoacil-tRNA Sintetases/antagonistas & inibidores , Aminoacil-tRNA Sintetases/genética , Animais , Grupo Borrelia Burgdorferi , Desenvolvimento de Medicamentos , Humanos , Doença de Lyme/tratamento farmacológico , Doença de Lyme/microbiologia , Biossíntese de Proteínas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...